HomeCybersecurityHow Quantum Computing Can...

How Quantum Computing Can Transform Cybersecurity

Quantum power is nevertheless a fact, a certainty, and an inevitability, still years away from the mainstream. On data that is coded according to the binary system, conventional, old-fashioned digital computers operate. The condition of any single bit may only be 0 or 1. in binary. The choices are pretty binary, quite literally. Only in one of two places can any single computing bit reside. Quantum computers, now emerging as the next generation of computation, operate on data that comes in the form of qubits or quantum bits.

Quantum goes beyond the binary by a qubit’s capacity to live in more than one of two places. A qubit, called a superposition, may represent a quantum state of two or more values simultaneously. Depending on the sense in which it is presented, a qubit’s superposition can also be distinguished, so we get more computing power in the same space in simple terms.

But quantum states are fragile, and quantum errors are notoriously difficult to quantify, so we must treat this new force respectfully. How does this new thrust of computational power offer us new power levels to examine IT systems for security vulnerabilities at a more granular level and secure us through more complex quantum cryptography layers?


Quantum computing is a game-changing technology for cybersecurity, thanks to the inherent pace boost it provides to solve complex mathematical issues. Trend Micro Vice President of Security Research Rik Ferguson states that conventional computing is essential for “brute-forcing” mathematical problems instead of quantum before it arrives at a solution. The more complicated the query, the slower the response arrives.

Traditional cryptography relies on the fact that it is mathematically complex to factor in large prime numbers, and it takes a long time for hackers to try to brute-force an answer. This kind of factorization is where quantum computers shine, theoretically reducing the time from billions of years to a matter of seconds to solve problems. We can now use the power to create more complex layers of security,’ says Mr. Ferguson.

But is quantum computing still capable of arming hackers? “Obviously yes,” he says. What we need to note is that, in one way or another, the majority of attacks in today’s threat environment target the consumer, and social engineering plays as much, if not more excellent, role than technological expertise. As long as a person in improper circumstances can be convinced to part with a key, all the world’s cryptography will not help, quantum or not.


Perhaps the most convincing short-term impact of quantum is the position of “distribution” security features that use quantum effects, giving us a powerful mechanism for exchanging cryptographic keys with a high degree of implied security between remote parties.

According to IBM computer scientist Leigh Chase, we should look more generally at the types of data transformation operations we may perform in quantum computers to exploit effects that are not present in IT’s the classical world. Products such as superposition and entanglement give advantages in information-processing, many of which can be significantly extended to cryptography, such as the enhanced generation of random numbers.

But when we strive to build phrases such as randomness of superposition entanglement into the layperson’s technology comprehension, do we now throw out all our current cryptosystems favouring quantum? For now, IBM’s stance is to consider quantum-safe cryptography, which involves or exploits quantum effects only for some of them.

Trust and Responsibility

Although money is more generally about quantum power that keeps us safer, we should continually remind ourselves that there is no guarantee of accountability for safe use. FireEye senior threat analyst Parnian Najafi acknowledges that specific threats to current cryptography are raised by quantum computers running known as the Shor algorithm.

Except for brute-force attacks, specific encryption algorithms are considered to be unbreakable. Although attacks by brute force may be complex for classical computers, it would be easy for quantum computers to make them susceptible to such attacks, says Ms Najafi.

Yet she admits that, shortly, hacktivists and cybercriminals are unlikely to be able to afford quantum computers. Nonetheless, nation-states do have the power to afford and maintain them. ‘Current quantum computers need the isolation of nearly absolute zero temperature from interference such as radio waves and noise, so qubits preserve their mechanical quantum state. For non-national state actors, all these conditions make it complicated and costly,” she says.”

Defence and Safety

So is a quantum catastrophe on the horizon, and would a primary goal be cryptocurrencies? There are currently underway attempts to render cryptocurrency safer, including the quantum-resistant ledger, as the research of a security company FireEye highlights. It would seem then that we are also working to defend against its misuse as quickly as we create quantum strength.

Security strategist Ramses Gallego at Symantec agrees. He points out that a computer that could efficiently and efficiently run Shor’s algorithm, the most complicated quantum algorithm known, could allow us to factorize large prime numbers and do things that we can not even imagine today.

However, such great computational ability will present a significant challenge for cryptography in the future as cybercriminals will be able to target highly complex quantum attack organizations. Security researchers are currently designing quantum-resistant algorithms to pre-empt this, but we have yet to see how quantum computing in the future can genuinely revolutionize cryptography.


Despite human weaknesses, could we use quantum computing to create a completely hacking-resistant, unbreakable computer? Gemalto’s director of product management, Joe Pindar, is optimistic.

What is remarkable about random numbers from quantum computing and why Swiss banks and governments use their early prototypes is that they can build a ‘one-time pad.’ This is a particular form of the key for encryption that is virtually unbreakable. Interestingly, one-time pads were first used in World War One and are made exceptionally safe by being used for a single message just once, so codebreaking methods don’t work, he says.

Mr Pindar gives some reassurance about the possible abuse of quantum computing. He says that while most of the encryption algorithms currently used on the internet would shift, it is not true that quantum breaks all encryption. “Encryption systems, such as legal documents, that are used to secure data stored in database records and archives, use a different technique that quantum computing has so far been unable to break,” he says.

Most Popular

More from Author

Network Automation: A New Approach to Network Assurance

Networks are a critical part of any business, and ensuring that...

5 Cybersecurity Tips for Businesses

There are many benefits to working with IT Support Services to...

Use An LMS to Train Your Employees About Cybersecurity

Do you conduct cyber security training in your company? If you...

Jobs You Can Get With CCNA Certification

Cisco Certified Network Associate is a widely respected IT credential. The...

Read Now

Revolut Became the New Target For Phishing Scams. What happened?

On the 11th of September, Revolut users noticed unusual events in the app chat. A few days after the activity, people were alerted via email that the company had been the target of a cyberattack, which exposed multiple user accounts. This has decreased the bank’s credibility, and...

Getting Started with PCI Data Security Compliance

Getting started with Payment Card Industry (PCI) security for payment card processors and merchants is an actual result of the demand for credit card data security. The PCI standard comprises 12 requirements for companies managing, processing, or handling payment cardholder data. The 12 PCI requirements determine the architecture...

5 Ways To Protect Your Company Data From Hackers

According to economists and industry experts, data is currently the world's most valuable asset. This is hardly unexpected, considering that organizations of all scales and sizes rely solely on data to make crucial choices, seize opportunities, develop strategies, and enhance operations. For these reasons, you should make...

Common Email Phishing Attacks, Techniques & Preventions

Email phishing attacks are a form of social engineering commonly used to obtain sensitive user information, such as login information and credit card details. It occurs when an attacker poses as a trustworthy entity and convinces a victim to open an email, instant message, or text message....

Cybersecurity Vulnerabilities Any Business Should Look Out For

No business is immune to cybersecurity vulnerabilities. Small businesses are more at risk than larger businesses. This is because they often have fewer resources to devote to cybersecurity and may not have the same level of protection as a larger company. If you are a business owner,...

5 Ways to Quickly Secure a Small Business from Cyber Attacks

There is no question that cyber attacks and hackers are targeting small businesses. They don't have the infrastructure to deal with professional attacks; most can't afford to hold out against ransom attacks. Many businesses don't have any viable defense at all.  Any small business online is fundamentally a cash...

Pros and Cons of Using Shared or Private Proxy Servers

Proxies are internet go-betweens that are used by businesses and individuals. Shared or private proxy servers, in essence, functions as a buffer between you and the Internet. Proxies provide anonymous online browsing and can conceal the user's IP address. Anonymous proxy servers protects your location, browsing habits, and...

Pros and Cons of Shared Datacenter Proxies

Collecting freely available data online should be accessible to everyone, but the price of achieving it stops most businesses. Shared datacenter proxies are the solution to cut costs and maintain performance. Unfortunately, this isn’t widespread knowledge, and many users struggle to make a choice. We will cover the...

Cyber Security Risk Management: Best Practices

The continuous management of threats posed by insufficient safeguards against cyberattacks is an essential component of any corporation. The internet is not a safe place, even though we think it is. Hackers are lurking everywhere and just waiting for you or one of your employees to make...

How User Access Management Improves Network Security

User access management (UAM) is the process through which the administrator gives access to the right person to use the IT tools and services at the right time. This includes access to external applications, security requirements, and permissions. Many online tools are available nowadays where you can...

8 Essential Tips to Protect Against Email Phishing

Phishing scams are on the rise. It's thought that around 90% of all data branches directly result from phishing. Email phishing is a particular problem. In 2022, it's estimated that around 3.4 billion phishing emails will be sent daily. With businesses losing around $1.7 million to cybercrime...

Five Ways to Increase Your Website Security

With the change in time, businesses have now become more prominent online. There are many threats of fraud and data theft by malicious groups. At every second, there is a possibility that your accounts are being tried to hack into. Cyberpunks steal data to misuse them and...